선형변환임을 증명(선형변환 성질 두가지를 만족하는지 검증)

$S(u+v)=(s_x(u_x+v_x), s_y(u_y+v_y),s_z(u_z+v_z))$

$= (s_xu_x+s_xv_x, s_yu_y+s_yv_y,u_zu_z+s_zv_z))$

$= (s_xu_x,s_yu_y,s_zu_z)+(s_xv_x,s_yv_y,s_zv_z)$

$=S(u)+S(v)$

$S(ku)=(s_xku_x,s_yku_y,s_zku_z)$

$=k(sx_ux,s_yu_y,s_zu_z)$

$=kS(u)$

선형변환이므로 행렬 표현 가능

$S(i)=(s_x\cdot 1, s_y\cdot 0, s_z\cdot 0)=(s_x, 0, 0)$

$S(j)=(s_x\cdot 0, s_y\cdot 1, s_z\cdot 0)=(0, s_y, 0)$

$S(k)=(s_x\cdot 0, s_y\cdot 0, s_z\cdot 1)=(0, 0, s_z)$

$S=\begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & s_z \end{bmatrix}$

$S=\begin{bmatrix} 1/s_x & 0 & 0 \\ 0 & 1/s_y & 0 \\ 0 & 0 & 1/s_z \end{bmatrix}$